Linear function

~constant rate of change

~graph is a line

Nonlinear function

~NOT a constant rate of change

~graph is NOT a line

EXAMPLE 1 Identifying Functions from Tables

Does the table represent a linear or nonlinear function? Explain.

.+3+3+3 .						
	X	3	6	9	12	
	у	40	32	24	16	
-8 -8 -8						

.+2 .+2 .+2						
X	1	3	5	7		
y	2	11	33	88		
+9 +22 +55						

LINEAR, because it has a constant rate of change.

NONLINEAR, because it does not have a constant rate of change.

Extra Example 1

Does the table represent a *linear* or nonlinear function? Explain.

LINEAR, because it has a constant rate of change.

EXAMPLE 2 Identifying Functions from Graphs

Does the graph represent a linear or nonlinear function? Explain.

NONLINEAR, because it is not a straight line.

LINEAR, because it is a straight line.

Extra Example 2

Does the graph represent a *linear* or *nonlinear* function? Explain.

NONLINEAR, because it is not a straight line.

On Your Own

Does the table or graph represent a *linear* or *nonlinear* function? Explain.

_						
X	у	ļ				
0	25	-5				
7	20	-5				
14	15					
21	10	-5				
	0 7 14	0 25 7 20 14 15				

LINEAR, because it is a constant rate of change

2.	х	у	1
•	2	8	
+2	4	4	-4
+2+2+	6	0	-4
+2	8	-4	-4

LINEAR, because it is a constant rate of change

NONLINEAR, because it is not a straight line. Which equation represents a *nonlinear* function?

(A)
$$y = 4.7$$

$$\bigcirc$$
 $y = \pi x$

$$\bigcirc$$
 $y = \frac{4}{x}$

©
$$y = \frac{4}{r}$$
 D $y = 4(x - 1)$

The equations y = 4.7, $y = \pi x$, and y = 4(x - 1) can be rewrit slope-intercept form. So, they are linear functions.

The equation $y = \frac{4}{x}$ cannot be rewritten in slope-intercept for So, it is a nonlinear function.

The correct answer is **©**.

Does the equation represent a linear or nonlinear function?

$$y = x^2 + 1$$

NONLINEAR, because it cannont be written in slope intercept form (it has an exponent!).

Extra Example 3

Does y = 6x - 3 represent a *linear* function?

LINEAR, because it can be written in slope intercept form. (It already is!)

Does 4x + 2y = 8 represent a linear function?

LINEAR, because it can be written in slope intercept form: y = -2x + 4(minus 4x then divide everything by 2)

📄 On Your Own

Does the equation represent a *linear* or *nonlinear* function? Explain.

4.
$$y = x + 5$$

5.
$$y = \frac{4x}{3}$$

6.
$$y = 1 - x^2$$

LINEAR. because it can be written in slope intercept form. (It already is!)

LINEAR, because it can be written in slope intercept form. $(y = 4/3 \times + 0)$

NONLINEAR. because it cannont be written in slope intercept form (it has an exponent!).

Homework: pg. 172-173 #3-14

**you do not need to graph #3-6, just explain why you chose your answer