Card \#18

Write an algebraic expression for the word phrase:

9 more than the product of 51 and a number t

Card \#3

Card \#12

Simplify the expression:

$$
\left(2^{4}-6\right)^{2}
$$

Card \#15

Simplify the expression:

$$
-a b^{2}-a b^{2}
$$

Card \#5

Evaluate the expression for the given variables:
$c d^{2}+4$
When $c=-3$ and $d=5$

Card \#10

Name all subsets of the number:
-2

Card \#4

Simplify the expression:

$$
(24-24 y) \frac{1}{4}
$$

Card \#9

Evaluate the expression for the given variables.

$$
\left(3 c^{2}-3 d\right)^{2}-21
$$

When $c=-3$ and $d=5$

Card \#8

Write an algebraic expression for the word phrase:

14 less than the quotient of 63and a number h

Card \#2

Card \#6

Simplify the expression:

$$
-6-(-3) \cdot(-2)^{3}
$$

Card \#13

$$
\begin{aligned}
& \text { Which property is illustrated? } \\
& \qquad-8(\mathbf{1})=-8
\end{aligned}
$$

Card \#1

Are the following expressions equivalent? Explain.

$$
\frac{11 t}{(r-11)} \text { and } t
$$

Card \#17

Simplify the expression:

$$
\left(-\frac{1}{6}\right)^{2}
$$

Card \#7

Use grouping symbols to make the equation true.

$$
4^{2}-5 \cdot 2+1=1
$$

Card \#11

Tell whether the ordered pair is a solution to the equation.
$10-5 x=y ; \quad(-4,10)$

Card \#14

Are the following expressions equivalent? Explain.

$$
\frac{81 x y}{9 x} \text { and } 9 x y
$$

Card \#16

Evaluate the expression for the given values:

$$
u+3 v^{2}-2 u^{3}
$$

When $u=-1$ and $v=-3$

